Ultra High Molecular Weight Polyethylene (UHMW PE)

Harvey L. Stein, P.E.
Ticona LLC

Reprinted from
ENGINEERED MATERIALS HANDBOOK™
Volume 2: Engineering Plastics
ASM International® is a Society whose mission is to gather, process and disseminate technical information. ASM fosters the understanding and application of engineered materials and their research, design, reliable manufacture, use and economic and social benefits. This is accomplished via a unique global information-sharing network of interaction among members in forums and meetings, education programs, and through publications and electronic media.

Copyright © 1992, Revised 1999
by
ASM International®
All Rights Reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical photocopying, recording, or otherwise, without the prior written permission of the publisher.
Nothing contained in this book is to be construed as a grant of any right or manufacture, sale, or use in connection with any method, process, apparatus, product, or composition, whether or not covered by letters patent or registered trademark, nor as a defense against liability for the infringement of letters patent or registered trademark.

SAN: 204-7586

ASM International®
Materials Park, Ohio 44073

Printed in the United States of America

This paper is subject to revision. Statements and opinions advanced in papers or discussion are the author's and are his responsibility, not ASM International's; however, the paper has been edited by ASM International for uniform styling and format.

NOTICE TO USERS: To the best of our knowledge, the information contained in this publication is accurate; however we do not assume any liability whatsoever for the accuracy and completeness of such information. Further, the analysis techniques included in this publication are often simplifications and, therefore, approximate in nature. More vigorous analysis techniques and/or prototype testing are strongly recommended to verify satisfactory part performance. Anyone intending to rely on such recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards.

It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication.

Any determination of the suitability of a particular material for any use contemplated by the user is the sole responsibility of the user. The user must verify that the material, as subsequently processed, meets the requirements of the particular product or use. The user is encouraged to test prototypes or samples of the product under the harshest conditions likely to be encountered to determine the suitability of the materials.

Material data and values included in this publication are either based on testing of laboratory test specimens and represent data that fall within the normal range of properties for natural material or were extracted from various published sources. All are believed to be representative. Colorants or other additives may cause significant variations in data values. These values are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes.

We strongly recommend that users seek and adhere to the manufacturer's or supplier's current instructions for handling each material they use. Please call the appropriate number listed below for additional technical information or for specific Material Safety Data Sheets (MSDS) before attempting to process these products. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist.
Ultra High Molecular Weight Polyethylene (UHMWPE)

Harvey L. Stein, P.E.
Ticona LLC

Ultra High Molecular Weight Polyethylene (UHMWPE) is a linear, low-pressure, Ziegler-type catalyst polyethylene resin. Its weight-average molecular weight of \(4 \times 10^6\) is approximately ten times that of high molecular weight high-density polyethylene (HMW-HDPE) resins. The extremely high molecular weight of this resin, which is commercially available in grades ranging in molecular weight from \(3.5 \times 10^6\) to \(6 \times 10^6\) g/mol (ASTM calculation), yields several unique properties.

UHMWPE has both the highest sliding abrasion resistance and highest notched impact strength of any commercial plastic. Figures 1 and 2 show a comparison of abrasion and impact strengths with those of other materials.

Combined with abrasion resistance and toughness, the low coefficient of friction of UHMWPE yields a self-lubricating, nonstick surface. Static and dynamic coefficients of friction are significantly lower than steel and most plastic materials (Table 1).

The basic chemical unit of UHMWPE is \(-\text{CH}_2-\). Thus, a \(4 \times 10^6\) molecular weight resin contains approximately \(285 \times 10^3\) carbon atoms or units in the polymer chain. The insolubility of UHMWPE makes gel permeation chromatography (GPC) impractical. Molecular weight is therefore determined by the measurement of dilute-solution viscosity, as detailed in ASTM D 1601 and D 4020 (Ref 1, 2). With these procedures, UHMWPE is defined as a substantially linear polyethylene (PE) having a relative viscosity of 1.4 or greater at a concentration of 0.02% at 135°C (275 °F) in decahydroparaphthalene. The nominal molecular weight (ASTM calculation) is approximated using the Mark-Houwink equation \(M = 5.37 \times 10^4 (IV)^{1.37}\), where IV represents intrinsic viscosity. This method is not valid on thermally converted UHMWPE materials because of inadequate solubility and possible cross-linking. However, a relative indication of molecular weight can be determined by density, sand slurry abrasion and notched impact tests of molded or extruded specimens.

As molecular weight increases from \(3 \times 10^6\) to \(6 \times 10^6\), abrasion resistance improves significantly (by approximately 30%), whereas impact strength decreases from 140 to 80 kJ/m\(^2\) (67 to 38 ft·lbf/in\(^2\)). By comparison, most HDPE grades range from 13 to 40 kJ/m\(^2\) (6 to 19 ft·lbf/in\(^2\)). A special test specimen had to be devised to determine the toughness of UHMWPE because no break occurs with conventional test methods. The ASTM D 256 (Ref 3) Izod impact test specimen was modified with two opposing 15° notches rather than the standard 45° notch. Double-notched Izod values typically exceed 1.6 kJ/m (30 ft·lbf/in) notch for UHMWPE. Figures 3 and 4 show the relationship between notched impact strength and temperature. Most other mechanical, thermal, and physical properties remain essentially constant throughout the molecular weight range of UHMWPE.

Because of the relatively low density of 0.93 g/cm\(^3\), the price per cubic inch of standard grade virgin resins is currently lower than for any other engineering resin. UHMW-PE is supplied as a free-flowing, near-white powder. Available packaging includes bags (25 kg, or 55 lb), containers or bulk packs (545

Fig. 1 Comparative abrasion resistance of different engineering resins. PTFE, polytetrafluoroethylene; PVC, polyvinyl chloride; PMMA, polymethyl methacrylate; EP, epoxy.
Notched impact strength of UHMWPE as a function of temperature, based on a single 45° V-notch

Typical Applications

Because of its self-lubricating, nonstick, lightweight, and wear-resistant characteristics, UHMWPE has been used for many years in the bulk material handling (grain, cement, gravel, and aggregate) and ore/coal mining industries. Typical applications include liners for silos, hoppers, dump trucks, railcars, and chutes; conveyor troughs and flights; wear strips; slide plates; and unlubricated bearings and bushings. Additional benefits of UHMWPE include increased product flow, reduction or elimination of caking (particularly in wet or icy conditions), noise abatement, and reduced energy consumption during use.

The absorption capacity for shock stress is extraordinary, even at temperatures approaching absolute zero. Thus, cryogenic and cold-weather applications are ideal for UHMWPE, whereas lower molecular weight HDPE resins could fail. Seals, pistons, and pumps have performed satisfactorily in liquid hydrogen pumps at -253°C (-423°F).

The textile industry uses UHMWPE because of its excellent impact resistance and sound-dampening characteristics. It is used in highly stressed parts, including loom pickers, shuttles, sticks, straps, caps, buffers, gears, pinions, and small rollers.

Prime virgin UHMWPE grades are in compliance with U.S. Food and Drug Administration regulations and have received U.S. Department of Agriculture approval. Certain grades have been tested and comply with 3A requirements or have been listed at NSF.

The food, beverage, and pharmaceutical industries extensively use UHMWPE because oil and grease can be eliminated from most bearing applications. Furthermore, the growth of fungus and bacteria is discouraged because the material is nonporous. Common applications include bottling plant star wheels and guard rails.

Examples of other applications include pump impellers, pump housings, valve seats and valve gaskets for the chemical process industry; doctor blades, suction box covers,
and chain conveyor wear plates for the pulp and paper industry; and ski and snowboard bottom surfaces, snowmobile drive sprockets, golf ball cores, truck bed linings and maritime industry dock fenders. The special sintering processes can produce porous parts, including marking pen nibs, and filters for potable water, as well as industrial aeration and filtration uses. Nautical rope and personnel protection items are produced from UHMWPE fibers. UHMWPE is also an important component of lead-acid battery separators that isolate the electrode plates from one another.

Metal shafts can rotate freely in UHMWPE bushings despite misalignment or the presence of sand, dust, or dirt particles. In the design of bushings and bearings, dry PV (pressure times velocity) values should be limited to 4 N·m/mm²·min (1900 ft·lbf/in²·min), whereas lubricated applications range from 6 to 7 N·m/mm²·min (2850 to 3330 ft·lbf/in²·min) (Fig. 5). Load and speed limits are 10 MPa (1.5 ksi) and 120 m/min (400 ft/min), respectively. Bearing temperatures below 40 °C (104 °F) should be maintained.

Family Characteristics

The extremely high molecular weight of UHMWPE makes it a unique material. Its special characteristics, some of which have already been described, include:

- Outstanding sliding abrasion resistance
- Highest notched impact resistance of any plastic material
- Low coefficient of friction
- Nonstick, self-lubricating surface
- Good chemical resistance
- Negligible water absorption
- Excellent properties at cryogenic conditions
- Stress-cracking resistance exceeding 3000 h in surfactants
- Energy absorption and sound-dampening properties
- Excellent dielectric and insulating properties

The outstanding characteristics of this material can be maintained from -269 °C (-452 °F) to 90 °C (194 °F) and even higher for short periods of time. Because the resin does not melt-flow or liquefy at its 138 to 142 °C (280 to 289 °F) melting point, the resin retains excellent dimensional stability at temperatures up to 200 °C (392 °F). In a special application described in Ref 4, UHMWPE was used at temperatures up to 450 °C (840 °F) for sulfuric acid spray nozzles, because rapid carbonization of the surface occurred, forming a protective skin.

Table 2 UHMW PE properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Typical Values</th>
<th>ASTM test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density, g/cm³</td>
<td>0.926-0.934</td>
<td>D 792</td>
</tr>
<tr>
<td>Tensile strength at yield, MPa</td>
<td>21 (3.1)</td>
<td>D 638</td>
</tr>
<tr>
<td>Tensile strength at break, MPa</td>
<td>48 (7.0)</td>
<td>D 638</td>
</tr>
<tr>
<td>Elongation at break, %</td>
<td>350</td>
<td>D 638</td>
</tr>
<tr>
<td>Young's modulus, GPa (10⁶ psi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 23 °C (73 °F)</td>
<td>0.69 (0.10)</td>
<td>D 638</td>
</tr>
<tr>
<td>At -269 °C (-450 °F)</td>
<td>2.97 (0.43)</td>
<td>D 638</td>
</tr>
<tr>
<td>Izod impact strength, kJ/m (ft · lbf/in) notch</td>
<td>1.6 (30)</td>
<td>D 256(a)</td>
</tr>
<tr>
<td>At 23 °C (73 °F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, Shore D</td>
<td>62-66</td>
<td>D 2240</td>
</tr>
<tr>
<td>Abrasion resistance</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Water absorption, %</td>
<td>Nil</td>
<td>D 570</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystalline melting range, °C</td>
<td>138-142 (280-289) Polarizing microscope</td>
<td></td>
</tr>
<tr>
<td>Coefficient of linear expansion, 10⁻¹/K</td>
<td>2</td>
<td>D 696</td>
</tr>
<tr>
<td>At 20 to 100 °C (68 to 212 °F)</td>
<td>0.5</td>
<td>D 696</td>
</tr>
<tr>
<td>At -200 to -100 °C (-330 to -150 °F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume resistivity, Ω · m</td>
<td>>5 x 10⁴</td>
<td>D 257</td>
</tr>
<tr>
<td>Dielectric strength, kV/cm (V/mil)</td>
<td>900 (2300)</td>
<td>D 149</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>2.30</td>
<td>D 150</td>
</tr>
<tr>
<td>Dissipation factor, × 10⁻⁴</td>
<td>1.9</td>
<td>D 150</td>
</tr>
<tr>
<td>At 50 Hz</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>At 1 kHz</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>At 0.1 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface resistivity, w% carbon black, Ω</td>
<td>>10¹⁴</td>
<td>D 257</td>
</tr>
<tr>
<td>0.2% for color</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5% for UV protection</td>
<td>10¹⁰</td>
<td>D 257</td>
</tr>
<tr>
<td>6.5% for antistatic applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.7% for conductive applications</td>
<td>10¹⁰</td>
<td>D 257</td>
</tr>
</tbody>
</table>

(a) Samples had two notches (15° ± 1/2°) on opposite sides to a depth of 5 mm (0.20 in.).
Outdoor ultraviolet (UV) light can degrade this material, as well as other olefinic materials, leading to cracking within a year period, unless UV stabilizers are added during processing. An allowance for creep, or cold flow (such as 2% at 2 MPa at 20°C, or 0.250 ksi at 68°F), should be made. Creep properties under compressive stress are shown in Fig. 6. Other properties of the processed resin are listed in Tables 2 and 3.

Chemical resistance to aggressive media, including most strong oxidizing agents, is excellent. Exposure to aromatic and halogenated hydrocarbons results in only slight surface swelling if moderate temperature levels are maintained.

Processing Parameters

The extremely high processing viscosities require special processing procedures because the resin does not exhibit a measurable melt index and is more like an amorphous solid. The most common methods for fabrication of UHMW-PE are ram extrusion and compression molding. In both cases, the individual UHMWPE particles are fused into an appa-
Ultra High Molecular Weight Polyethylenes (UHMWPE) / 171

UHMWPE can be made with additives and fillers, it is difficult to improve its two outstanding properties, abrasion resistance and impact strength, because no chemical bonding occurs between the resin and the additive. In fact, one must consider the amount of decrease of either property that can be tolerated. Normally, any modification made to satisfy the application requirements compromises properties. Because the resin is viscoelastic, any additive must be homogeneously mixed prior to processing. Furthermore, the particle size distribution of the modifier should be comparable to or smaller than that of the UHMWPE particles.

Reinforcement. Hardness, creep resistance, dimensional stability, and coefficient of thermal expansion, which is normally 1.5 to 2.0 X 10⁻⁴/°K, can be improved with the proper selection of reinforcing filler. Wood flour, glass spheres, glass fibers, graphite, aluminum powder, talc, chalk, silicates, and carbonates have been used in concentrations of 5 to 30%. The addition of 5% microglass spheres increases wear resistance and is commonly used for suction box covers in the pulp and paper industry (Ref 5).

Cross-Linking and Antioxidants. Chemical cross-linking with 0.3 to 0.5% (active ingredient) organic peroxides has been found to improve wear resistance by as much as 30% over nonmodified resins, while reducing deformation under load. Thin-film transparency improves, and density is lowered because of a reduction in crystallinity. Cross-linking can also be accomplished by beta or gamma radiation although polymer chain scission leading to degradation can occur, particularly when radiation occurs in the presence of oxygen. For continued exposure to high temperatures (80°C, or 175°F), it is desirable to add 0.1 to 0.2% antioxidant to minimize degradation.

Metal Powder Additives. The heat conductivity of UHMWPE components can be improved by adding metal powders such as copper, aluminum, and bronze. A 400% increase in conductivity (1.65 versus 0.4 W/m · °K, or 11.4 versus 2.8 Btu · in/h · ft² · °F) occurs with the addition of 50 wt% (28.5 vol%) aluminum powder. graphite improves thermal conductivity even more efficiently. In both cases, however, toughness and strength are significantly reduced. A mixture of 30 wt% aluminum powder and 10 wt% graphite results in a thermal conductivity of 2.5 W/m · °K (17 Btu · in/h · ft² · °F) and is used for pile driver pads (Ref 5).

UHMWPE is an effective electrical insulator with a dielectric constant of 2.3 at 2 MHz. The surface resistivity of the natural resin is greater than 10¹⁵ Ω. It can be reduced to the antistatic region (10⁹ to 10¹⁰ Ω) a level required for many mining applications, by the addition of 5 to 6.5 wt% conductive carbon black. Concentrations of 15 to 20 wt% carbon black provide resistivities in the conductive range of less than 10⁹ Ω.

UV Resistance. The addition of light-absorbing substances provides UV light resistance, with 2.5% carbon black being the most commonly used additive. When the finished product cannot be black, satisfactory UV resistance, which is a minimum of 5 years, can be obtained by 0.5 wt.% UV stabilizer.

Pigments and Lubricants. UHMWPE is typically sold in its natural color, which is opaque white. However, it can be produced in any color with the proper selection of organic or inorganic pigments. Normally, 0.1 to 0.3 wt% is sufficient to obtain good color. Silicone oil, waxes, greases, and molybdenum disulfide (normally, 2 to 5 wt%) can be added to UHMWPE to reduce by a slight amount the already low coefficient of friction properties.

Flammability. The flammability of UHMWPE is similar to that of PE. It ignites readily when in contact with flame and continues to burn when the source of ignition is removed.

Resin Suppliers. Domestic resin producers of UHMWPE are Ticona LLC, Summit, NJ and Montell, Inc., Wilmington, DE.

REFERENCES